If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=440
We move all terms to the left:
2x^2+4x-(440)=0
a = 2; b = 4; c = -440;
Δ = b2-4ac
Δ = 42-4·2·(-440)
Δ = 3536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3536}=\sqrt{16*221}=\sqrt{16}*\sqrt{221}=4\sqrt{221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{221}}{2*2}=\frac{-4-4\sqrt{221}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{221}}{2*2}=\frac{-4+4\sqrt{221}}{4} $
| 1/3(x-6)=1/4(x+5) | | 4x-6+x=1-3x-5 | | 8(×-2)-5(x+4)=20x+x | | 2x-8=x-+5 | | 7u=64-u | | 4(x-2)=x-7 | | 47=-y/6 | | 36p=3 | | 5d+6=21 | | 6x^2-9x=4 | | (2x)=(3x+15) | | 30=4y+y | | X25+y43=1822 | | 4x+5-8x=-7 | | 1.83=n+0.77 | | A43+b25=18.22 | | 13+2x=-6-3x | | 6x-39=5x-67 | | 16-2t=3/2t+ | | 8(x-2)-5(x+4)=20x+× | | 9x+7=3x+26 | | -2/3k+8=5 | | 6x+2(x+4)=0 | | 4x+5×=8× | | 17x+2=18x=2 | | 10x+2=8x+8 | | (x-5)(-3)=13 | | 5x-3(-14+-4x)=22 | | -23k+8=5 | | 3x+15+2x=60 | | 1/5k-3=2/5k+16 | | 95.5x+45=382.75 |